

International conference

6-9 JUNE 2023 Espace Prouvé, Nancy, France

Onset of Vibration-Induced White Finger: Insight Derived from a Meta-Analysis of Exposed Workers

Magdalena Scholz,¹ Anthony J. Brammer,² and Steffen Marburg¹

¹Technical University of Munich

Chair of Vibro-Acoustics of Vehicles and Machines

²University of Connecticut Health

Department of Medicine

111trd

Outline

- **Motivation**
- 619 JUNE 2023 Meta-Analysis by Nilsson et al. [1]
- Models and Results

Issues •

N.

FRANCE NANCY - FRANCE

JA

Literature Analysis

- NE 2023 NANCY -Studies used by Nilsson et al.
- **Participants**
- Evaluation methods
- Health issues
- Exposure time and latency
 - Tools used impact and non-impact tools
 - Vibration data

FRANCL

Analysis – First Data Set

- Include all studies reporting values for prevalence of VWF (>10%), duration of exposure D_y (years) & A(8)
- Linear interpolation to exposure time at 10% prevalence assuming 0% prevalence at 0 exposure time
- Plot of exposure time versus A(8)
 - Regression analysis: $D_{y,10} = a \cdot A(8)^b$
 - 95% confidence intervals for regression line

Analysis – Additional Data

Total operating time in h:

 $t_{exposed} = N^{o} of \frac{h}{day}(t_{workday}) \times days exposed (N_{workdays})$ \downarrow Exposure time in years:

$$D_y = \frac{t_{exposed}}{t_{workday}} \div N_{workdays \, per \, year}$$

-ANC.

Comparison

11

	present analysis	ISO 5349-1 [3]	Nilsson et al. [1]
parameter a	20.6	31.8	≈ 22
parameter b	-0.74	-1.06	≈ -0.54
studies used	single & multi tool studies	single tool studies	single & multi tool studies
interpolation / extrapolation	interpolation	-	both

 $D_{y,10} = a \cdot A(8)^b$

several issues have been uncovered by this analysis

Issues

- large data spread
- interpolation versus extrapolation
- determination of daily & lifetime exposure

measurement of vibration

- characterization of exposure
- different information in papers used

FRANCL

-

NANCY

HAND-ARM VIBRATION 6-9 JUNE 2023

- extend data set using studies not used by Nilsson et al.
- different interpolation than linear
- other metrics of exposure (vibration magnitude & duration)
- different frequency weighting (e.g. ISO/TR 18570 [4])
- \rightarrow unify health effects from exposure to single and multiple tools

Sources

[1] Tohr Nilsson, Jens Wahlström, and Lage Burström. "Hand-arm vibration and the risk of vascular and neurological diseases—a systematic review and meta-analysis."PloS one 12.7 (2017): e0180795.

[2] Magdalena F. Scholz, Anthony J. Brammer & Steffen Marburg. "Exposure-response relation for vibration-induced white finger: inferences from a published meta-analysis of population groups." *Int Arch Occup Environ Health* (2023). https://doi.org/10.1007/s00420-023-01965-w

[3] ISO 5349-1 (2001). Mechanical vibration - Measurement and evaluation of human exposure - Part 1: General requirements. Geneva, International Organization for Standardization.

[4] ISO/TR 18570 (2017). Mechanical vibration - Measurement and evaluation of human exposure to hand transmitted vibration - Supplementary method for assessing risk of vascular disorders. Geneva, International Organization for Standardization.

